modified on 4 October 2011 at 13:54 ••• 2,559 views

Development:COSMO Solvation Model

From NWChem

Jump to: navigation, search

COSMO Solvation Model

COSMO is the continuum solvation `COnductor-like Screening MOdel' of A. Klamt and G. Schüürmann to describe dielectric screening effects in solvents.

A. Klamt and G. Schüürmann, J.Chem.Soc.Perkin Trans. 2, 1993 799 (1993).

The NWChem COSMO module implements algorithm for calculation of the energy for the following methods:

  1. Restricted Hartree-Fock (RHF),
  2. Restricted open-shell Hartree-Fock (ROHF),
  3. Restricted Kohn-Sham DFT (DFT),
  4. Unrestricted Kohn-Sham DFT (ODFT),

by determining the solvent reaction field self-consistently with the solute charge distribution from the respective methods. Note that COSMO for unrestricted Hartree-Fock (UHF) method can also be performed by invoking the DFT module with appropriate keywords.

Correlation energy of solvent molecules may also be evaluated at

  1. MP2,
  2. CCSD,
  3. CCSD+T(CCSD),
  4. CCSD(T),

levels of theory. It is cautioned, however, that these correlated COSMO calculations determine the solvent reaction field using the HF charge distribution of the solute rather than the charge distribution of the correlation theory and are not entirely self consistent in that respect. In other words, these calculations assume that the correlation effect and solvation effect are largely additive, and the combination effect thereof is neglected. COSMO for MCSCF has not been implemented yet.

In the current implementation the code calculates the gas-phase energy of the system followed by the solution-phase energy, and returns the electrostatic contribution to the solvation free energy. At the present gradients are calculated by finite difference of the energy. Known problems include that the code does not work with spherical basis functions. The code does not calculate the non-electrostatic contributions to the free energy, except for the cavitation/dispersion contribution to the solvation free energy, which is computed and printed. It should be noted that one must in general take into account the standard state correction besides the electrostatic and cavitation/dispersion contribution to the solvation free energy, when a comparison to experimental data is made.

Invoking the COSMO solvation model is done by specifying the input COSMO input block with the input options as:

cosmo
  [off]
  [dielec  <real dielec default 78.4>]
  [radius  <real atom1>
           <real atom2>
      . . .
           <real atomN>]
  [rsolv   <real rsolv default 0.00>]
  [iscren  <integer iscren default 0>]
  [minbem  <integer minbem default 2>]
  [maxbem  <integer maxbem default 3>]
  [ificos  <integer ificos default 0>]
  [lineq   <integer lineq default 1>]
end

followed by the task directive specifying the wavefunction and type of calculation, e.g., "task scf energy", "task mp2 energy", "task dft optimize", etc.

"off' can be used to turn off COSMO in a compound (multiple task) run. By default, once the COSMO solvation model has been defined it will be used in subsequent calculations. Add the keyword "off" if COSMO is not needed in subsequent calculations.

"Dielec" is the value of the dielectric constant of the medium, with a default value of 78.4 (the dielectric constant for water).

"Radius" is an array that specifies the radius of the spheres associated with each atom and that make up the molecule-shaped cavity. Default values are Van der Waals radii. Values are in units of angstroms. The codes uses the following Van der Waals radii by default:

Default radii provided by Andreas Klamt (Cosmologic)

vdw radii: 1.17 (+/- 0.02) * Bondi radius (Bondi, J. Phys. Chem., 68, 441, 1964)

optimal vdw radii for H, C, N, O, F, S, Cl, Br, I (Klamt et al, J. Phys. Chem. A, 102, 5074 (1998)

for heavy elements: 1.17*1.9

     data (vander(i),i=1,102)
    1 / 1.300,1.638,1.404,1.053,2.0475,2.00,
    2   1.830,1.720,1.720,1.8018,1.755,1.638,
    3   1.404,2.457,2.106,2.160,2.05,2.223,
    4   2.223,2.223,2.223,2.223,2.223,2.223,
    5   2.223,2.223,2.223,2.223,2.223,2.223,
    6   2.223,2.223,2.223,2.223,2.160,2.223,
    7   2.223,2.223,2.223,2.223,2.223,2.223,
    8   2.223,2.223,2.223,2.223,2.223,2.223,
    9   2.223,2.223,2.223,2.223,2.320,2.223,
    1   2.223,2.223,2.223,2.223,2.223,2.223,
    2   2.223,2.223,2.223,2.223,2.223,2.223,
    3   2.223,2.223,2.223,2.223,2.223,2.223,
    4   2.223,2.223,2.223,2.223,2.223,2.223,
    5   2.223,2.223,2.223,2.223,2.223,2.223,
    6   2.223,2.223,2.223,2.223,2.223,2.223,
    7   2.223,2.223,2.223,2.223,2.223,2.223,
    7   2.223,2.223,2.223,2.223,2.223,2.223/

See for examples:

  1. E. V. Stefanovich and T. N. Truong, Chem.Phys.Lett. 244, 65 (1995).
  2. V. Barone, M. Cossi, and J. Tomasi, J.Chem.Phys. 107, 3210 (1997).

"Rsolv" is a parameter used to define the solvent accessible surface. See the original reference of Klamt and Schuurmann for a description. The default value is 0.00 (in angstroms).

"Iscren' is a flag to define the dielectric charge scaling option. "iscren 1" implies the original scaling from Klamt and Schüürmann, mainly "(ε − 1) / (ε + 1 / 2)", where ε is the dielectric constant. "iscren 0" implies the modified scaling suggested by Stefanovich and Truong, mainly "(ε − 1) / ε". Default is to use the modified scaling. For high dielectric the difference between the scaling is not significant.

The next three parameters define the tesselation of the unit sphere. The approach follows the original proposal by Klamt and Schüürmann. A very fine tesselation is generated from "maxbem" refining passes starting from either an octahedron or an icosahedron. The boundary elements created with the fine tesselation are condensed down to a coarser tesselation based on "minbem". The induced point charges from the polarization of the medium are assigned to the centers of the coarser tesselation. Default values are "minbem 2" and "maxbem 3". The flag +ificos+ serves to select the original tesselation, "ificos 0" for an octahedron (default) and "ificos 1" for an icoshedron. Starting from an icosahedron yields a somewhat finer tesselation that converges somewhat faster. Solvation energies are not really sensitive to this choice for sufficiently fine tesselations.

The "lineq" parameter serves to select the numerical algorithm to solve the linear equations yielding the effective charges that represent the polarization of the medium. "lineq 0" selects an iterative method (default), "lineq 1" selects a dense matrix linear equation solver. For large molecules where the number of effective charges is large, the codes selects the iterative method.

The following example is for a water molecule in `water', using the HF/6-31G** level of theory:

start
echo
 title "h2o"
geometry
 o                  .0000000000         .0000000000        -.0486020332
 h                  .7545655371         .0000000000         .5243010666
 h                 -.7545655371         .0000000000         .5243010666
end
basis segment cartesian
 o library 6-31g**
 h library 6-31g**
end
cosmo
 dielec 78.0
 radius 1.40
        1.16
        1.16
 rsolv  0.50
 lineq  0
end
task scf energy


Instead of listing COSMO radii parameters in the input, the former can now be loaded using an external file through the following directive (placed outside the cosmo block)

set cosmo:map cosmo.par

The format for such file (named as cosmo.par in the above case) consists of the atom name (as found in geometry block) followed by the radii. The file HAS TO BE PLACED IN THE PERMANENT DIRECTORY. In the case of the water example shown above it can take the following form

O 1.40
H 1.16

The input file in this case is

start
echo
 title "h2o"
geometry
 o                  .0000000000         .0000000000        -.0486020332
 h                  .7545655371         .0000000000         .5243010666
 h                 -.7545655371         .0000000000         .5243010666
end
basis segment cartesian
 o library 6-31g**
 h library 6-31g**
end
cosmo
 dielec 78.0
 rsolv  0.50
 lineq  0
end
set cosmo:map cosmo.par
task scf energy