modified on 10 August 2017 at 11:42 ••• 145,500 views

NWChem:Current events

From NWChem

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
 +
===NWChem 6.5 soon to be released===
 +
We have now entered the NWChem code freeze for release 6.5. Please refrain from checking in new development code and limit checkins to bug fixes. As of yet we have not branched the release. The plan is to stabilize the current development and branch the release later (end of August/beginning of September). This avoids duplication of work and checking fixes in in two places (the development branch and the release branch) as well as weird inconsistencies that may arise from forgotten checkins.
 +
===NWChem 6.3 release now available===
===NWChem 6.3 release now available===

Revision as of 10:56, 12 June 2014

Contents

NWChem 6.5 soon to be released

We have now entered the NWChem code freeze for release 6.5. Please refrain from checking in new development code and limit checkins to bug fixes. As of yet we have not branched the release. The plan is to stabilize the current development and branch the release later (end of August/beginning of September). This avoids duplication of work and checking fixes in in two places (the development branch and the release branch) as well as weird inconsistencies that may arise from forgotten checkins.

NWChem 6.3 release now available

On May 17, 2013 NWChem version 6.3 was released. An overview of the changes, added functionality, and bug fixes in this latest version can be found here.

NWChem highlighted in DOE Pulse

NWChem's efforts to solve chemistry challenges with high performance computing were highlighted in DOE Pulse.

NWChem 6.1.1 bug fix release now available

On June 26, 2012 NWChem version 6.1.1 was released. This version is solely a bug fix release with the same functionality as NWChem 6.1. A list of bug fixes in this latest version can be found here.

NWChem Schedules Tutorials and Hands-On Training

Centers or sites interested in hosting a workshop or tutorial with or without hands-on training, please contact Bert de Jong.

The NWChem developers will be holding:

  • Tutorials are being planned in the US, India, and Italy. Updates will be provided soon.
  • A three-day tutorial and hands-on training at A*STAR in Singapore on October 23-25, 2012
  • A three-day tutorial and hands-on training at the National Supercomputer Center in Beijing on October 17-19, 2012

Past tutorial/training sessions:

  • A two-day tutorial and hands-on training at the LONI Institute on the Louisiana State University (Baton Rouge, LA) campus June 8-9, 2012
  • A three-day tutorial and hands-on training at A*STAR in Singapore on March 27-29, 2012 (Cancelled due to family circumstances)
  • A two-day tutorial and hands-on training at EPCC in Edinburgh, UK on June 13-14, 2011
  • A two-day tutorial and hands-on training at LRZ in Garching, Germany on June 9-10, 2011
  • A three-day tutorial and hands-on training at the National Supercomputer Center in Beijing on December 11-13, 2010
  • A two-day tutorial and hands-on training at NCSA in Urbana on December 1-2, 2010
  • A 2-hour tutorial at the Pacific Northwest AVS meeting held at PNNL on September 15, 2010

NWChem 6.1 has been released

On January 27, 2012 NWChem version 6.1 was released. An overview of the changes, added functionality, and bug fixes in this latest version can be found here.

PCCP Perspective Published

Pccp0120026 ifc 148.jpg

Developers of NWChem at EMSL were the lead authors on a perspective article in the highly ranked PCCP journal on utilizing high performance computing for chemistry and parallel computational chemistry. The article and cover were published in Phys. Chem. Chem. Phys. 12, 6896 (2010).

NWChem released as open-source

On September 30, 2010 NWChem version 6.0 was released. This version marks a transition of NWChem to an open-source software package. The software is being released under the [Educational Community License 2.0] (ECL 2.0). Users can download the source code and a select set of binaries from this site.

New functionality, improvements, and bug fixes include:

  • Greatly improved memory management for TCE four-index transformation, CCSD(T), CR-EOMCCSD(T), and solver for EOMCCSD
  • Performance and scalability improvments for TCE CCSD(T), CR-EOMCCSD(T), and EOMCCSD
  • TCE based static CCSD hyperpolarizabilities
  • New exchange-correlation functionals available in the Gaussian DFT module
    • Range-separated functionals: CAM-B3LYP, LC-BLYP, LC-PBE, LC-PBE0, BNL. These functionals can also be used to perform TDDFT excited-state calculations
    • SSB-D functional
    • Double hybrid functionals (Semi-empirical hybrid DFT combined with perturbative MP2)
  • DFT response calculations are now available for order 1 (linear response), single frequency, electric field and mixed electric-magnetic field perturbations.
  • Spin-orbit now works with direct and distributed data approaches
  • Greatly improved documentation for QM/MM simulations
  • Bug fix for DISP: Empirical long-range vdW contribution
  • Bug fix for Hartree-Fock Exchange contributions in NMR
  • Plane-wave BAND module now has parallelization over k-points, AIMD, and Spin-Orbit pseudopotentials
  • Plane-wave modules have improved minimizers for metallic systems and metadynamics capabilities