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Kohn-Sham Equations
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Nonlinear eigenvalue equations

Require self-consistent solution
In order to solve these equations we need to expand 
the wavefunctions Ψ in a basis set
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Introduction
Gaussian DFT Versus Plane-Wave DFT  

Gaussian Basis Set
Parallel Efficient
All-Electron

Core regions included in 
calculation
First row transition metals can 
readily be calculated

Ab Initio MD expensive
Pulay forces

Different basis sets for 
molecules and solids

PlaneWave Basis Set
Parallel Efficient
Requires pseudopotentials to be 
efficient

Not all-electron
Core region not included
First row transition metals are 
difficult 

Norm-conserving pseudopotentials 
of the nodeless 3d states require 
large plane-wave basis sets
Significant overlap between the 
valence 3d states and core densities

Efficient Ab Initio MD
Car-Parrinello

Same basis set for molecules and 
solids
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Plane-Wave Basis Sets
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System  is assumed to be placed inside a unit cell defined by the 
unit vectors 
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The volume of the unit cell is 
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Plane-Wave Basis Sets
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Periodic Boundaries
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Plane-Wave Basis Sets
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Since are system is periodic our plane-wave 
expansion must consist of only the plane-waves 
that have the periodicity of the lattice,

We can determine these plane-waves from the 
following constraint
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Plane-wave Expansion
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Plane-Wave Basis Sets
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It is easy to show from the periodicity constraint that 
the wave-vectors can be defined in terms of the 
following reciprocal lattice vectors
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Reciprocal lattice vectors

Wave-vectors that satisfy the periodicity of the lattice
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Plane-Wave Basis Sets
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The upper-limits of the summation (N1,N2,N3) control the 
spacing of the real-space grid
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The exact form of the plane-wave expansion used in plane-
wave code is
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Plane-Wave Basis Sets

There is a further truncation of plane wave expansion in plane-
wave calculations.  Namely, only the reciprocal lattice vectors 
whose kinetic energy lower than a predefined maximum cutoff 
energy,

are kept in the expansion, while the rest of the coefficients are set 
to zero.  Besides reducing the computational load, this truncation 
strategy limits the effects of unit cell orientation on the outcome of 
the calculation.

DFT calculations rarely use a completely converged plane-wave 
basis, but that convergence is usually unnecessary.  However, 
incomplete basis set calculations using different cell sizes require 
that each calculation use the same Ecut
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Wavefunction Cutoff Energy
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Plane-Wave Basis Sets
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Since the density is the square of the wavefunctions, it can 
vary twice as rapidly.  Hence for translational symmetry to be 
formally maintained the density, which is also expanded using 
plane-waves 
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Should contain 8 times more plane-waves than the 
corresponding wavefunction expansion

Density   Cutoff Energy

Often the Density cutoff energy is chosen to be the same as 
the wavefunction cutoff energy – This approximation is known 
as dualling
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Plane-Wave Basis Sets
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In solid-state systems, the plane-wave expansion given by
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G–point Plane-wave Expansion

is not complete.  Based on the fact that the translation operators T(R) 
are compatible with the Hamiltonian of the system, [T(R),H]=0, and 
that not all eigenkets of T(R) can be expanded strictly in terms of the 
set of eigenkets |un>. The wavefunction expansion can be 
generalized  

Bloch’s Theorem

Where k are all the allowed wave-vectors in the primitive cell of the 
reciprocal lattice.
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Valence wavefunction behavior in a typical molecular system

Motivations for Pseudopotential 
Method
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Atomic sphere region: Interstitial region: 
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Pseudopotential Method

• Core electrons removed
• Strong ionic potential is replaced by a weak pseudopotential
• Valence electrons are described via a smooth pseudowavefunctions
• Loss of wavefunction in core region
• 3d valence states are not well screened 

Valence wavefunctions can be divided into two regions
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Pseudopotential Method

The pseudopotential method is based on two observations. First, in 
almost any system one could identify a set of the so-called core orbitals 
which change little from their atomic counterparts. Second, the remainder, 
the so-called valence orbitals, acquire their oscillating behavior mainly due 
to Pauli exclusion principle or, in plain words, orthogonality constraints to 
the core orbitals. In pseudopotential approximation the original atoms that 
constitute a given chemical system are modified by removing core energy 
levels and enforcing the Pauli exclusion principle via repulsive 
pseudopotential. This removes the wiggles from the atomic valence 
orbitals and allows efficient application of plane wave basis set expansion. 
The resulting pseudoatoms will in general acquire a nonlocal potential 
term.
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Pseudopotential Method
There are many other ways to define VR such that H+VR
has the same valence eigenvalues as the actual 
Hamiltonian.
Hamann et al proposed a simple procedure to extract 
pseudopotentials from atomic calculations, these potentials 
are designed to have the following properties:

Real and pseudo valence eigenvalues agree for a chosen 
“prototype” atomic configuration
Real and pseudo atomic valence wavefunctions agree beyond a 
chosen “core radius” rc
Real and pseudo valence charge densities agree for r>rc
Logarithmic derivatives and the first energy derivatives agree for r>rc

This class of pseudopotentials are called norm-conserving 
pseudopotentials
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Constructing a Pseudopotential

Step 1: Solve all-electron eigenvalues and wavefunctions for a reference atom

Step 2: Construct pseudo wavefunction from the all-electron wavefunctions, 
such that:

•Real and pseudo eigenvalues agree
•Real and pseudo atomic valence wavefunctions agree beyond a chosen 
“core radius” rc
•Real and pseudo valence charge densities agree for r>rc
•Logarithmic derivatives and the first energy derivatives agree for r>rc 

Step 3: Invert the atomic Schrodinger Equation to obtain a screened 
pseudopotential

Step 4: Generate an ionic  pseudopotential from the screened 
pseudopotentials

Step 5: Transform the semi-local potential to a non-local form (Kleinman-
Bylander)
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PAW method 
Free-space Boundary Conditions

Table 3: Fe3+ multiplet structure 
 

 PAW/101Ry NWChem/VTZ PSPW/131Ry CAS(5e,5d)/ecdp Exp. 
4X-6X 3.3 eV 3.0 eV 6.2 eV** 4.6eV 4.1eV 
2X-6X 4.8 eV 4.6 eV 9.1 eV** 6.6eV  

** semi-core corrections not included.

• Technique to implement free-space boundary 
conditions into plane-wave methods 

• E.J. Bylaska et al, J.Phys.Chem, 100, 6966 (1996).
• E.J. Bylaska et al, Comp. Phys. Comm.

• Allows us to calculate charged systems
• Implementing Free-Space boundary condition 

does not significantly degrade performance of 
plane-wave codes. 

• Technique implemented into PAW code.

Figure: accuracy of free-space methods( ) ( ) rdrd
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PAW method 
Aperiodic Convolution: Working in the [-L,L)3 domain

Lack of accuracy comes 
from cusp in cutoff 
Coulomb kernel
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