From NWChem
			Viewed 1147 times, With a total of 2 Posts
												
			
                  
        
            
                |  | 
            
                | 
                        
                            | Clicked A Few TimesThreads 2 Posts 8
 |  | 
		                    
		                        | 1:35:24 AM PST - Sun, Nov 29th 2015 |  |  
		                        | Hello, I am having difficulty getting the SCF iterations to look like reasonable convergence is happening. I am used to handling typically difficult cases (e.g. anions and diffuse functions) in other programs (G09, ORCA, GAMESS). There seems to be very little information in the documentation or forums for dealing with presumably common convergence issues. The problem I am having is getting a medium sized system to converge. The guess looks reasonable but the SCF cycles always make some absurdly large step as shown below on the 5th SCF cycle. I have tried removing DIIS, changing levelshifting, changing integration grids, changing thresholds, turning off symmetry and reasonable combinations of those. The integrated density seems strange as there should be 342 electrons, a seemingly large discrepancy from the 342.2 or so. I had no issue with the geometry optimization using the def2-SVP basis set and I expect some potential issues relating using the larger def2-TZVP basis set and linear dependencies, but typically this problem results in the SCF nearly converging and oscillating.
 
 Any ideas or tips would be greatly appreciated.
 Thanks
 Brad Rose
 
 SCF cycles:
 
 
   convergence    iter        energy       DeltaE   RMS-Dens  Diis-err    time---------------- ----- ----------------- --------- --------- ---------  ------
 d=90,ls=0.0          1  -2069.2799221782 -8.49D+03  1.62D-03             143.5
 Grid integrated density:     342.355072410021
 Requested integration accuracy:   0.10E-06
 d=90,ls=0.0          2  -2069.3288457699 -4.89D-02  1.60D-03             195.5
 Grid integrated density:     342.319599138210
 Requested integration accuracy:   0.10E-06
 d=90,ls=0.0          3  -2069.3722852981 -4.34D-02  2.15D-03             247.5
 Grid integrated density:     342.287673419738
 Requested integration accuracy:   0.10E-06
 d=90,ls=0.0          4  -2069.4109961586 -3.87D-02  4.15D+01             299.4
 Grid integrated density:     342.222503260402
 Requested integration accuracy:   0.10E-06
 d=90,ls=0.0          5****************** -1.09D+06  2.43D+02             361.9
 Grid integrated density:     342.200624706760
 Requested integration accuracy:   0.10E-06
 d=90,ls=0.0          6****************** -3.90D+07  2.19D+02             428.0
 Grid integrated density:     342.180837722986
 Requested integration accuracy:   0.10E-06
 
 
 Sample input:
 
 
 title "b3lyp-d3"C        1.005318590      1.005318590      0.000000000dft
 xc b3lyp
 disp vdw 3
 direct
 grid fine
 tolerances tight
 convergence ncydp 3 damp 90 nolevelshifting
 end
 basis
 * library def2-tzvp
 end
 geometry
 
 C       -0.367972140      1.373290730      0.000000000
 C       -1.373290730      0.367972140      0.000000000
 C       -1.005318590     -1.005318590      0.000000000
 C        0.367972140     -1.373290730      0.000000000
 C        1.373290730     -0.367972140      0.000000000
 C       -2.755662630      0.738377580      0.000000000
 C       -0.738377580      2.755662630      0.000000000
 C        2.017285050      2.017285050      0.000000000
 C        2.755662630     -0.738377580      0.000000000
 C        0.738377580     -2.755662630      0.000000000
 C       -2.017285050     -2.017285050      0.000000000
 C       -1.647866770     -3.390989410      0.000000000
 C       -0.268400220     -3.760616360      0.000000000
 C        2.112749590     -3.122589190      0.000000000
 C        3.122589190     -2.112749590      0.000000000
 C        3.760616360      0.268400220      0.000000000
 C        3.390989410      1.647866770      0.000000000
 C        1.647866770      3.390989410      0.000000000
 C        0.268400220      3.760616360      0.000000000
 C       -2.112749590      3.122589190      0.000000000
 C       -3.122589190      2.112749590      0.000000000
 C       -3.760616360     -0.268400220      0.000000000
 C       -3.390989410     -1.647866770      0.000000000
 C        4.400325600      2.664691500      0.000000000
 C        5.143139500     -0.107527730      0.000000000
 C        4.507853330     -2.478448000      0.000000000
 C        5.484062450     -1.469450100      0.000000000
 C        4.844177260     -3.878109980      0.000000000
 C        3.878109980     -4.844177260      0.000000000
 C        2.478448000     -4.507853330      0.000000000
 C        1.469450100     -5.484062450      0.000000000
 C        0.107527730     -5.143139500      0.000000000
 C       -0.936453130     -6.134235560      0.000000000
 C       -2.256125580     -5.780630400      0.000000000
 C       -2.664691500     -4.400325600      0.000000000
 C       -4.014612350     -4.014612350      0.000000000
 C       -4.400325600     -2.664691500      0.000000000
 C       -5.780630400     -2.256125580      0.000000000
 C       -6.134235560     -0.936453130      0.000000000
 C       -5.143139500      0.107527730      0.000000000
 C       -5.484062450      1.469450100      0.000000000
 C       -4.507853330      2.478448000      0.000000000
 C       -4.844177260      3.878109980      0.000000000
 C       -3.878109980      4.844177260      0.000000000
 C       -2.478448000      4.507853330      0.000000000
 C       -1.469450100      5.484062450      0.000000000
 C       -0.107527730      5.143139500      0.000000000
 C        0.936453130      6.134235560      0.000000000
 C        2.256125580      5.780630400      0.000000000
 C        2.664691500      4.400325600      0.000000000
 C        5.780630400      2.256125580      0.000000000
 C        6.134235560      0.936453130      0.000000000
 H        5.901683530     -4.157440700      0.000000000
 H        4.157440700     -5.901683530      0.000000000
 H        1.752655390     -6.540998960      0.000000000
 H       -0.649607490     -7.189728210      0.000000000
 H       -3.032287510     -6.551291020      0.000000000
 H       -4.788343570     -4.788343570      0.000000000
 H       -6.551291020     -3.032287510      0.000000000
 H       -7.189728210     -0.649607490      0.000000000
 H       -6.540998960      1.752655390      0.000000000
 H       -5.901683530      4.157440700      0.000000000
 H       -4.157440700      5.901683530      0.000000000
 H       -1.752655390      6.540998960      0.000000000
 H        6.540998960     -1.752655390      0.000000000
 H        7.189728210      0.649607490      0.000000000
 H        6.551291020      3.032287510      0.000000000
 C        4.014612350      4.014612350      0.000000000
 H        4.788343570      4.788343570      0.000000000
 H        3.032287510      6.551291020      0.000000000
 H        0.649607490      7.189728210      0.000000000
 
 end
 
 task dft optimize
 |  | 
 
        |  | 
        
              
        
            
                | 
                        
                            | 
                                  
                                     Edoapra  Forum:Admin, Forum:Mod, bureaucrat, sysop
                                    
                                   |  | 
            
                | 
                        
                            | Forum VetThreads 9 Posts 1472
 |  | 
		                    
		                        | 5:35:13 PM PST - Tue, Dec 1st 2015 |  |  | Spherical basis 
 |  
		                        | Here is a slightly modified input file. The main change is the use of the spherical functions (the default is cartesian) This input will converge using NWChem 6.6
 
 
start b3lyp-d3 
title "b3lyp-d3"
 dft
  xc b3lyp
  disp vdw 3
  direct
  grid fine
  tolerances tight
 end
 basis spherical
  * library def2-tzvp
 end
 geometry
C        1.005318590      1.005318590      0.000000000
C       -0.367972140      1.373290730      0.000000000
C       -1.373290730      0.367972140      0.000000000
C       -1.005318590     -1.005318590      0.000000000
C        0.367972140     -1.373290730      0.000000000
C        1.373290730     -0.367972140      0.000000000
C       -2.755662630      0.738377580      0.000000000
C       -0.738377580      2.755662630      0.000000000
C        2.017285050      2.017285050      0.000000000
C        2.755662630     -0.738377580      0.000000000
C        0.738377580     -2.755662630      0.000000000
C       -2.017285050     -2.017285050      0.000000000
C       -1.647866770     -3.390989410      0.000000000
C       -0.268400220     -3.760616360      0.000000000
C        2.112749590     -3.122589190      0.000000000
C        3.122589190     -2.112749590      0.000000000
C        3.760616360      0.268400220      0.000000000
C        3.390989410      1.647866770      0.000000000
C        1.647866770      3.390989410      0.000000000
C        0.268400220      3.760616360      0.000000000
C       -2.112749590      3.122589190      0.000000000
C       -3.122589190      2.112749590      0.000000000
C       -3.760616360     -0.268400220      0.000000000
C       -3.390989410     -1.647866770      0.000000000
C        4.400325600      2.664691500      0.000000000
C        5.143139500     -0.107527730      0.000000000
C        4.507853330     -2.478448000      0.000000000
C        5.484062450     -1.469450100      0.000000000
C        4.844177260     -3.878109980      0.000000000
C        3.878109980     -4.844177260      0.000000000
C        2.478448000     -4.507853330      0.000000000
C        1.469450100     -5.484062450      0.000000000
C        0.107527730     -5.143139500      0.000000000
C       -0.936453130     -6.134235560      0.000000000
C       -2.256125580     -5.780630400      0.000000000
C       -2.664691500     -4.400325600      0.000000000
C       -4.014612350     -4.014612350      0.000000000
C       -4.400325600     -2.664691500      0.000000000
C       -5.780630400     -2.256125580      0.000000000
C       -6.134235560     -0.936453130      0.000000000
C       -5.143139500      0.107527730      0.000000000
C       -5.484062450      1.469450100      0.000000000
C       -4.507853330      2.478448000      0.000000000
C       -4.844177260      3.878109980      0.000000000
C       -3.878109980      4.844177260      0.000000000
C       -2.478448000      4.507853330      0.000000000
C       -1.469450100      5.484062450      0.000000000
C       -0.107527730      5.143139500      0.000000000
C        0.936453130      6.134235560      0.000000000
C        2.256125580      5.780630400      0.000000000
C        2.664691500      4.400325600      0.000000000
C        5.780630400      2.256125580      0.000000000
C        6.134235560      0.936453130      0.000000000
H        5.901683530     -4.157440700      0.000000000
H        4.157440700     -5.901683530      0.000000000
H        1.752655390     -6.540998960      0.000000000
H       -0.649607490     -7.189728210      0.000000000
H       -3.032287510     -6.551291020      0.000000000
H       -4.788343570     -4.788343570      0.000000000
H       -6.551291020     -3.032287510      0.000000000
H       -7.189728210     -0.649607490      0.000000000
H       -6.540998960      1.752655390      0.000000000
H       -5.901683530      4.157440700      0.000000000
H       -4.157440700      5.901683530      0.000000000
H       -1.752655390      6.540998960      0.000000000
H        6.540998960     -1.752655390      0.000000000
H        7.189728210      0.649607490      0.000000000
H        6.551291020      3.032287510      0.000000000
C        4.014612350      4.014612350      0.000000000
H        4.788343570      4.788343570      0.000000000
H        3.032287510      6.551291020      0.000000000
H        0.649607490      7.189728210      0.000000000
 end
 task dft optimize
 |  | 
 
        |  | 
        
              
        
            
                |  | 
            
                | 
                        
                            | Clicked A Few TimesThreads 2 Posts 8
 |  | 
		                    
		                        | 7:02:29 AM PST - Thu, Dec 3rd 2015 |  |  
		                        | Thanks for the tip. It does indeed solve the problem. 
 It seems that some parameters are undocumented, for example after quite a lot of searching on the forums and google I found that
 set lindep:n_dep 0
 will allow me to set the linear dependance cutoff. I was unable to find this in the documentation. Is there anywhere these 'advanced' features are listed/discussed?
 
 Thanks.
 Brad Rose
 |  | 
 
        |  | 
        
      
        	
            
                AWC's:
                 2.5.10 MediaWiki - Stand Alone Forum Extension
Forum theme style by: AWC