A GPU Support for Large Scale Quantum Chemistry Applications

Selva Kumar Sengottaiyan', Fang Liu', Masha Sosonkina'
1 Ames Laboratory, Iowa State University

Abstract— GPU/GPGPU computing has been used widely
in scientific simulation to improve the performance on hybrid
architectures. The quantum chemistry field has benefited
greatly from using GPUs, including tasks such as visual-
ization of molecular orbitals and computation of electronic
structures. To gain significant success in using GPUs, a
large amount of code rewriting and restructuring is re-
quired, which is done primarily by those who understand
the algorithm in great detail. In this paper, two widely
used quantum chemistry packages are investigated to identify
the hot spots that can benefit most from GPUs, as well
as be the least intrusive to the existing code base. The
paper uses an experimental approach to integrate GPU
capability without restructuring the application. Experimen-
tal results show that the bottleneck is in CPU-GPU data
transmission. Additionally, a GPU-based DFTFOCK method
is implemented in GAMESS/NWChem and a GPU-based
eigensolver is integrated with NWChem successfully. Further
performance tuning is ongoing.

Keywords: GPU Computing, Eigensolver, Quantum Chemistry,
GAMESS, NWChem

1. Introduction

Graphics processing unit (GPU) computing or general-
purpose computing on graphics processing units (GPGPU)
is the use of a GPU to do general purpose scientific and
engineering computing. The model for GPU computing is
to use a central processing unit (CPU) and GPU together
in a heterogeneous co-processing computing model. While
one part of the application runs on the CPU, another
computationally intensive part can be accelerated by the
GPU. GPUs are an excellent accelerator for data-parallel
applications. From the user’s perspective, the application
just runs faster because it is using the high performance of
the GPU to boost performance. Large gains in performance
have been achieved through GPUs in recent years and GPUs
have become ubiquitous in handhelds, laptops, desktops,
and supercomputer clusters. The power of GPUs has been
incorporated into simulations or experiments and shows a
large benefit. However, a large amount of code rewriting and
restructuring is often required. GPU computing has recently
begun to be adopted in the quantum chemistry domain [7]
from visualization of molecular orbitals to computation of
electronic structures.

The General Atomic and Molecular Electronic Struc-
ture System (GAMESS) is a widely used computational
chemistry package [3], [8] for ab initio molecular quantum
chemistry. Using GAMESS, a variety of molecular prop-
erties, ranging from simple dipole moments to frequency

dependent hyperpolarizabilities may be computed. GAMESS
is capable of a very broad range of electronic structure
theory calculations and is therefore very widely used, with an
estimated user base of 150,000 in more than 100 countries.

NWChem [12] is a high-performance computational
chemistry software package that focuses on providing new
and essential scientific capabilities to its users in the areas
of the kinetics and dynamics of chemical transformations.
Initially, the problems of interest focused on environmental
issues, but recently NWChem has been applied to the
examination of metal clusters, biological systems, nanostruc-
tures, and materials. Both GAMESS and NWChem offer a
multitude of highly correlated methods, density functional
theory (DFT) with many exchange correlation function-
als. Additionally, NWChem provides plane-wave DFT with
exact exchange and Car-Parrinello simulations, molecular
dynamics with the AMBER and CHARMM force fields, and
combinations of these methods.

GPU and CPU hybrid platform have become widely used
during the past few years. Well designed algorithms can fully
take advantage of the performance of GPUs. Since quantum
chemistry applications such as GAMESS and NWChem
have always been at the forefront of improving time to
solution for platforms from desktops to supercomputers, it
is natural for these codes to use the computing power of
GPUs.

In this paper, after briefly introducing the GPU computing
model, two GPU eigensolver packages are compared. Next,
details of the integration work are given, followed by the
experimental results, related work and conclusions.

2. GPU computing model

The success of GPGPUs in the past few years has been
due in part to the ease of programming of the associated
CUDA parallel programming model. In this programming
model, the application developers modify their application
to take the compute-intensive kernels and map them to the
GPU. The rest of the application remains on the CPU. Map-
ping a function to the GPU involves extensively rewriting
the function, usually in C or C++, to expose the parallelism
in the function and adding keywords to move data to and
from the GPU. The developer is tasked with launching 10s
to 1000s of threads simultaneously. The GPU hardware
manages the threads and does thread scheduling.

Figure 1 shows the GPU computing model in which the
GPU is a compute device which serves as a co-processor for
the host CPU. The GPU architecture consists of a scalable
number of streaming multiprocessor (SM)s, a multi threaded
instruction fetch and issue unit, and a read-only constant

cache. A SM consists of Scalar Processor (SP) cores, special
function units for transcendentals, a multi threaded instruc-
tion unit, and on-chip shared memory. The SM creates,
manages, and executes concurrent threads in hardware with
zero scheduling overhead. To manage hundreds of threads
running several different programs, it employs a new ar-
chitecture single-instruction, multiple-thread (SIMT). The
SIMT unit creates, manages, schedules, and executes threads
in groups of 32 parallel threads called warps.

CPU GPU

Fig. 1: GPU computing model

a) Threads: For GPU acceleration, a program must be
decomposed into a large number of concurrently schedulable
units so that groups of threads can execute the same code
parallel to each other or suffer poor performance. In GPUs
these groups, known as warps, consist of 32 threads. If
threads within a warp diverge on a branch, the full warp
is serially executed on each branch path, with threads con-
verging into a single execution path only after the divergent
branch is finished. CUDA also requires the organization of
warps into larger units called blocks. Threads are assigned in
units of blocks and can only communicate directly with other
threads in the same block. Communication across blocks
requires termination of the GPU kernel and data transfer
into CPU memory where the required data manipulation can
be performed. These issues limit the applicability of GPUs
primarily to data parallel applications.

b) Memory hierarchy: Each thread has a private local
memory. Each thread block has a shared memory visible
to all threads of the block and with the same lifetime
as the block. All threads have access to the same global
GPU memory. The memory model gives the developer the
freedom to choose global or local memory, which may affect
the performance.

3. GPU eigenvalue computing packages

There are some eigensolver packages with GPU support
which are publicly available. The GPU-accelerated linear
algebra libraries (CULA) and Matrix Algebra on GPU
and Multicore Architectures (MAGMA) packages utilize
the NVIDIA CUDA parallel computing architecture to dra-
matically improve the computational speed of sophisticated
mathematics.

CULA' is a high-performance linear algebra library that
executes in a unified CPU/GPU hybrid environment. CULA
provides easy interfaces through which an application can
be integrated without extensive GPU programming expe-
rience. CULA can provide significant speedups over ex-
isting packages and supports both dense and sparse linear
algebra. CULA features a wide variety of linear algebra
functions, including but not limited to, least squares solvers
(constrained and unconstrained), system solvers (general
and symmetric positive definite), eigensolvers (general and
symmetric), singular value decompositions, and many useful
factorizations (QR, Hessenberg, etc.). All such routines are
presented in four standard data types in the Linear Algebra
PACKage (LAPACK) computations: single precision real
(S), double precision real (D), single precision complex (C),
and double precision complex (Z).

The MAGMA project’? aims to develop a dense
linear algebra library similar to LAPACK but for
heterogeneous/hybrid architectures, starting with current
“Multicore+GPU” systems. MAGMA provides linear alge-
bra algorithms, designs and frameworks for hybrid many
core and GPU systems that can enable applications to fully
exploit the power that each of the hybrid components offer.
This package also aims to solve a nonsymmetric linear
system of equations by increasing speed for the price of
relaxed accuracy.

a) Comparison between the two packages: CULA sup-
ports both dense and sparse linear algebra while MAGMA
mainly supports dense linear algebra. CULA supports both
single and double precision mathematics, and MAGMA
supports only single precision. The eigensolver routine in
CULA is a commercial code, while MAGMA is free. Both
packages have multi-GPU support.

Based on requirement in NWChem,where single precision
is sufficient. We have chosen MAGMA for our first stage of
integration.

4. Integration of GPU support

The DFT algorithms in GAMESS and NWChem are inte-
grated with GPU support, while the GPU-based eigensolver,
MAGMA, is linked to NWChem. The experimental work
examined these two well-known packages and identified the
hot spots for GPU integration.

4.1 DFT integration

a) GAMESS DFT with GPU: In GAMESS, the typical
DFT approach solves the Kohn-Sham equation [6] in which
the total energy of the molecular system is a function of
the positions of the atoms and one-particle densities. The
approach in DFT is to assume an initial charge density
and obtain successively better approximations of the density
and energy. When the total energy is minimized with re-
spect to the variational parameters, the resulting one-particle

ICULA tools http://www.culatools.com
2MAGMA http://icl.cs.utk.edu/magma/index.html

equations are exactly the same as the Hartree-Fock method
except for the handling of the exchange terms and the
way the electron exchange correlation is incorporated. DFT
methods can yield results similar to those obtained with ab
initio methods such as MP2, but at a substantially reduced
computational effort.

The major hot spot in a GAMESS DFT energy and
gradient calculation is in a routine called ’"GRDDFT’ which
calculates the correlation correction to Self-Consistent Field
(SCF) with an arbitrary set of density functionals. The
calculation of 'GRDDFT’ takes 94% of the total DFT
calculation time. The routine consists of four parts:

1) Memory allocation

2) Geometry and symmetry setting (DFTSET).

3) Calculating the exchange correlation energy (DMATD).

4) Calculating the exchange correlation energy gradient
(DFTGRAD).

The calculation of the energy exchange correlation matrix
takes almost 99% of the total GRDDFT execution time. The
function DMATD calculates the exchange correlation energy
by looping over radial grids which in turn loop over the an-
gular grids surrounding atoms. The looping over radial grids
and angular grids takes almost 99% of the total DMATD
execution time. Inside the loop over grid points, DFTFOCK
(which adds the DFT exchange/correlation contribution to
the Fock matrix) takes the largest amount (72%)of the
execution time. Thus DFTFOCK is chosen as the routine
to be executed on the GPU. Other reasons are that the data
dependency of DFTFOCK as compared to other subroutines
is minimal and the amount of parallelism inside the function
is high.

Figure 2 shows the integration of the CPU Fortran
code with the GPU Fortran code in GAMESS. Inside the
GAMESS Fortran code, the application code that has a high
degree of parallelism and that takes most of the CPU time is
identified. Then the identified code is transfered into CUDA
Fortran. In the above case, the DFTFOCK subroutine is
identified as a hot spot and converted into CUDA Fortran.
Then the changed code is compiled using the CUDA Fortran
compiler (PGFortran). The compiled code is linked with
GAMESS and the CUDA libraries.

b) NWChem DFT with GPU: NWChem contains a paral-
lel implementation of the Hohenberg-Kohn-Sham formalism
[4] of DFT which differs significantly from other ab initio
methods in the treatment of the exchange-correlation term
used in building the Fock matrix. The computationally
intensive components of a DFT calculation include the fitting
of the charge density, construction of the Coulomb potential,
construction of the exchange correlation potential, and the
subsequent diagonalization of the resulting equations. The
GPU accleration of DFT in NWChem concentrates getting
exchange-correlation contribution to the gradient and adding
the Bonacic-Fantucci repulsive term [6].

Figure 2 shows the integration of the CPU Fortran code
with GPU Fortran code in NWChem. As with the GAMESS

HOST (CPU)
GAMESS / NWCHEM- (DFT FORTRAN)

compiled Application Extended
i (CUDA FORTRAN)

with

PGFORTRAN

DEVICE (GPU)

Fig. 2: GAMESS/NWChem DFT-GPU Programming

Diagonalise the Matrixand NIEESIIEED “".3 AT
i calculate the Eigen Values
caleulate the Eigen Values

a) b)

Fig. 3: Function calls inside the NWChem eigensolver
implementation without and with GPU implementation

integration, the application code that has a high degree of
parallelism and that takes most of the CPU time is identified.
Then the identified code is changed into CUDA Fortran. The
NWChem GPU kernel is similar to GAMESS GPU kernel
(Figure 2) as in both cases the GPU kernel uses the CUDA
runtime API and CUDA libraries. During integration of the
GPU kernel in DFT for both NWChem and GAMESS, the
GPU kernel implementation requires only minimum code
rewriting as using the existing code is one of objectives of
this GPU acceleration implementation.

4.2 Integration of NWChem DFT eigensolver
with MAGMA

Figure 3a shows the order of function calls inside the
NWChem the DFT eigensolver DFT implementation with-
out GPU implementation. Figure 3b shows the changed
order of function calls inside the NWChem DFT eigen-
solver implementation with GPU implementation. Figure 4
shows the integration of the CPU Fortran code with GPU
Fortran code (MAGMA eigenvalue package) in NWChem.
The calculation of eigenvalues and eigenvectors is a time
consuming part in the Fock matrix updating procedure.
The MAGMA library of C functions offers two LAPACK-
style interfaces, referred to as the GPU interface and the

HOST (CPU)

NWCHEM- DFT (FORTRAN)

MAGMA
Packiges _

compiled

with NWCC
DEVICE (GPU)

Fig. 4: NWChem-GPU MAGMA Interface

CPU interface. The GPU interface takes input and produces
results in the GPU’s memory, whereas the CPU interface
produces results in the CPU’s memory. The GPU and CPU
interfaces, although similar, are not derivatives of each other,
but instead have different communication patterns. The GPU
function returns or sets the logical flag indicating whether
the GPU interface is to be used for calculations involving the
specified MAGMA matrix. NWChem normally calculates
the eigenvalue by using the EISPACK available with the
GA tool.

Global Array eigenvalue calculation

The Global Array diagnolization subroutine calls a se-
quence of subroutines from the eigensystem subroutine pack-
age (EISPACK) [10] to find the eigenvalues and eigenvectors
(optional) of a real symmetric matrix. In NWChem for serial
execution, the eigensolver 'rs’ from EISPACK is used. (The
eigensolver in ScaLAPACK [1] is called only for parallel
execution.)

In order to demonstrate the GPU version eigensolver can
benefit NWChem, the EISPACK eigenvector calculation in
NWChem will be replaced by the MAGMA GPU solvers.
Since NWChem invokes the ’rs’ solver through the Global
Array interface, the Global Array diagonalization subrou-
tine EISPACK calls are replaced by MAGMA calls. The
MAGMA eigensolver routine is Magma_dsyev which is
very similar to the analogous LAPACK routine. The major
difference between the ’rs’ subroutine and Magma_dsyevd
is that ’rs’ uses the whole real symmetric matrix whereas
Magma_dsyev uses the lower or upper triangular matrix. By
switching from the ’rs’ routine to the Magma_dsyevd, the
matrix needs to be converted to a new format.

5. Experiments

All the tests are conducted at the US Department of
Energy Ames Laboratory GPU computing cluster - Exalted,
which consists of 26 nodes, each having six 2.66 GHz Intel
Xeon processors, 8 nodes have 4 NVIDIA Tesla C2070
GPUs and 18 nodes have 2 NVIDIA Tesla C2070 GPUs.
The nodes are connected via Mellanox QDR InfiniBand and
each node has 24GB of RAM. Despite having two GPUs per

node available, we focused on using only a single GPU per
node. The speedup here is defined as the ratio of the existing
sequential algorithm execution to the parallel execution time.

5.1 GPU implementation of DFT in GAMESS

This experiment on the DFT method in GAMESS focuses
on performance improvement of the algorithm in terms
of speed up. As explained in Section 4.1, the DFTFOCK
routine is separated from the existing application and is
tested with various problem sizes (Fock matrix sizes) to find
the actual performance gain in terms of speed up. Various
scenarios with different optimization techniques are tested
and results are explained below.

Scenario 1: The GPU CUDA memory model comprises
various memory spaces, which differ enormously in latency
times, availability of caches, etc. Particularly important
features are global and shared memories, the former being
an off-chip memory and thus featuring high-access latencys;
the latter being on-chip memory and thus having reduced
latency. This scenario tests the global and shared memory
usage inside the GPU. The experiment results with problems
of various matrix size are shown in Table 3. Results are after
optimization for the number of threads and blocks based on
the problem size. In order to find the break point where
DFTFOCK can start to take advantage of the GPU, the
matrix size is continually increased. The GPU implemen-
tation shows better timings for problems with matrix size of
10,000 or more (Table3). For the problem size of 20,000,
there is not much difference in performance between CPU
implementation and CPU-GPU implementation using global
memory, but the CPU-GPU implementation using shared
memory increases the speed up from the CPU implemen-
tation (Table 3, columns 1&3) 2 times and the CPU-GPU
shared memory implementation also increases the speed up
from the global memory implementation (columns 2&3)
by about 2 times. The experimental results prove that the
GPU implementation should involve less kernel calls and
memory allocations for better performance. Shared memory
is exploiting the availability of on-chip shared memory
by enabling kernels to load all needed field components,
including the components corresponding to adjacent blocks
and provides huge performance gains in terms of GPU and
CPU execution time. Such gains are due both to the high
efficiency of shared-memory access, and due to the limited
number of separate memory transaction issued for each
thread i.e., reducing the effective number of memory read
operations for each thread. GPU speed up can be increased
more if memory usage is optimized. Hence it is necessary
to carefully design and implement kernel codes in order to
minimize the number of global-memory reads, by making
use of the other available kinds of memory.

Scenario 2: In this scenario, we used various Fock matrix
sizes to explain the factors affecting CPU-GPU implementa-
tion. An experiment (CASE A) is built with 50 outer loops
and 12525 inner loop iterations. This computation takes
about 20 microseconds in the CPU implementation. The
total execution time for the CPU-GPU implementation is 70

Table 1: Comparison of CPU, global memory GPU and shared memory GPU times in seconds (s)

Size of Matrix Total CPU execution | CPU+GPU execution | CPU+GPU execution time
time(s) time(Global)(s) (Shared (s)

50 20%10-6 70 %1073 70%10~3

500 100%10~5 74 %1073 74%1073

1000 2.145237%1073 4.213462 2.561576

5000 1.80 27.8 17.4

10000 211.2 277.0 173.6

20000 1732.1 1687.1 973.2

milliseconds. As expected, the GPU time is much greater
than the CPU execution time. The breakdown of execution
time for the CPU-GPU implementation (Table 2) shows that
memory allocation time in the CPU-GPU code far exceeds
the total CPU execution time. So experiments (B,C,D,E)
are built with a problem size of 500 outer loops and
125250 inner loop iterations and execute with various GPU-
CPU implementation/optimization techniques. The results
are shown in Table 2. For all cases (B,C,D,E), each GPU
block has 512 threads and the warp size is 32.

CASE B : Implementation of inner loop (DFTFOCK) in
the GPU kernel, allocating the memory outside the kernel
call. In this case, a small kernel size and large number of
threads and memory allocation calls are needed in the GPU.
CASE C : Implementation of inner loop (DFTFOCK) in the
GPU and allocating the memory inside the CUDA kernel.
CASE D : Implementation of outer loop (DFTFOCK) in
the GPU kernel, allocation of memory outside the outer
loop with a single kernel. In this case, the kernel size is
increased but the number of threads inside the problem is
decreased.

CASE E : Implementation of outer loop (DFTFOCK) in the
GPU kernel, allocation of memory outside the outer loop
and splitting the GPU kernel into two parts. In this case,
the kernel size needed for implementation is increased and
the number of threads inside the problem is decreased.

From Table 2, CASE A shows that the kernel call in a loop
is the bottleneck as each kernel initialization takes a lot of
time. Cases B, C, D and E also demonstrate that allocation
takes more time than kernel execution, and therefore GPU
implementation should involve less kernel calls and memory
allocations.Kernel execution time is in micro seconds range
where as total execution time is in milliseconds range. The
best execution time is from the results of CASE D (i.e.,
the implementation involves less GPU memory allocations
and less number of kernel calls irrespective of kernel size).
Test case D has increased kernel size (i.e., more functions)
compared to the kernels in other test cases, irrespective of
which it almost takes same time as the other test cases.
Thus, for GPUs, global inter-thread synchronization from
kernel calls is very costly, because it involves a kernel
termination and a new kernel call overhead from the host.
The application specific software optimization is critical to
fully utilize compute/bandwidth resources for both CPUs and
GPU.

5.2 DFT acceleration using GPU in NWChem

The experiment on the DFT-FOCK method in GAMESS
focuses on performance improvement of the algorithm in
terms of speed. As explained in Section 4.1, the DFT GPU
implemention is also done in the NWChem package. The
problem size is determined by the number of atoms used
in the input to the DFT NWChem package. The number of
GPU threads inside each block is 512 and the warp size is
32. Table 3 shows the speedup in DFT using the GPU for
various problem sizes. With the increase in problem size, the
speedup increases. Due to data transfer latency, the benefit of
using the GPU appears only if the problem size is increased
to more than 2000 atoms. The size of the kernel is also very
important in determing the speedup in the GPU.

Figure5, shows the running time for different numbers
of threads for a problem size of 10000 atoms. Figure5
explains performance of GPU in terms of number of threads
per block. The decrease in time with an increase in GPU
occupancy (threads) shows that more performance gain is
possible. A more occupancy indicates that the application
fully exploits available processing units. Unfortunately, the
amount of shared memory and registers used by each thread
block limits the occupancy value. The size of thread blocks
and/or shared-memory and registers usage must be designed
with care in order to maximize the occupancy. The speedup
increases with the increase in problem size but is greatly
limited by data transfer between the CPU and GPU. The
limitation in speedup highlights the importance of software
optimizations (memory and GPU occupancy), and an appli-
cation driven design methodology. s

5.3 MAGMA with eigensolver

The MAGMA package is integrated with NWChem pack-
age and the eigensolver of EISPACK available with the
GA tool is replaced with MAGMA eigensolver. We tested
the integration for various input molecules like Ozone, Crs.
Since the input molecules available for testing have relatively
small matrix size, we separated the Global Array eigensolver
from the NWChem calculation and ran the tests separately
from the NWChem execution. This allowed us to experiment
with larger matrix sizes in the MAGMA-based eigensolver.
Specifically, the test case uses the Global Array tools (which
NWChem also calls to calculate the eigenvalues) where the
existing EISPACK sequential eigenvalue solver is replaced
with the GPU eigenvalue solver from the MAGMA package.

Table 2: Time comparisons for various DFTFOCK CUDA implementations

Experiment Total execution time(Milli | Memory allocation | Total Kernel execution
S) time(Milli s) time(Micro s)

A 70 70 87

B 3.8 *¥103 73 270

C 76 73 270

D 74 73 87

E 75 73 110

Table 3: Comparison between CPU and GPU implementation times of DFT in NWChem

Size of Matrix | Total CPU execution time(s) | CPU+GPU execution time (Shared)(s) | Speed up
10 0.000 4.3954 Nil
100 1.326%1073 7.8526 Nil

1000 15.1234 17.2368 Nil
2000 38.3678 27.8459 1.3
5000 228.398 80.2697 3
10000 876.679 158.9643 5
1000 2500
400
800 2000
370
iSUU 1500
§ 500 : ==CPU(inS)
& 400) 1000 s
300 g
0)
100
a

16 3 64 118 256 512
Threads per black

Fig. 5: Timings in DFT calculations using various number
of threads in NWChem

Table 4 shows the speedup with various matrix sizes. If the
matrix size is less than 2000 there is no speed up. So a
GPU implementation for the eigenvalues can be effective if
the size of the matrix is around 2000. The speedup increases
with increase in matrix size.

Figure 6 shows execution time for various matrix sizes on
CPU and GPU respectively. The speedup starts to show when
the matrix size reaches 2000. To summarize, it is advisable
to keep data on the GPU memory, coalesce global memory
accesses to reduce latency of data transfer, take advantage
of shared memory, and to use hybrid code with double-
precision applications.

6. Related work

Several other quantum chemistry applications have been
implemented on GPU to exploit the greater level of paral-
lelism. The strategy and optimization techniques for back

Matrix size

Fig. 6: Speedup in eigenvalues calculation using MAGMA

porting an optimized GPU kernel to a multi-core CPU plat-
form for the application TeraChem - a quantum chemistry
code that was developed from the ground up to run on
NVIDIA GPUs - is discussed in [13]. For this study, one
of TeraChem’s largest and most complex GPU kernels is
considered. This kernel is used to calculate the electron
repulsion integrals involving d-functions. It also investigates
which CPU-specific optimizations can be applied to improve
performance of the backported kernel. The exploitation of
Quantum Monte Carlo algorithms with multiple forms of
parallelism and its package simulation code portability to
the NVIDIA CUDA GPU platform are discussed in [2]. The
restructuring of the CPU algorithms to express additional
parallelism, minimize GPU-CPU communication, and effi-
ciently utilize the GPU memory hierarchy is important in
porting the CPU code to GPU [2]. The restricted Hartree-
Fock method is implemented on a multi-GPU system (a con-
ventional cluster outfitted with GPUs) and its effectiveness is
demonstrated [9]. According to [11], GPUs can significantly

Table 4: Speedup in eigenvalues calculation using MAGMA

Size of Matrix | Total CPU execution time(s) | GPU execution time(s) | SpeedUp
10 0.00001 0.001300 Nil
100 0.00399 0.399 Nil
1000 2.4650 2.4550 Nil
2000 2291551 19.17751 1.2
3000 80.09583 50.1824 2
4000 400.1783 95.3697 4.19
5000 2100.7624 143.2457 15

outpace commodity CPUs in the central bottleneck of most
quantum chemistry problems. It also explains the method to
separate memory bound operations by modifying the algo-
rithm and the memory scheme. It also demonstrates speedups
are readily achievable for chemical systems of practical
interest, and the inherent high level of parallelism results in
complete elimination of inter-block communication. Due to
the relative number of single and double precision cores, the
best performance for GPU accelerated code is achieved when
performing operations at single precision. It also discusses
various issues that come with GPU implementations like
memory transfer, accuracy, and thread consistency [5].

7. Conclusion and future work

In this work, a GPU integration for two widely used
quantum chemistry packages, GAMESS and NWChem, is
successfully performed. The exploration of two applications
gives insights into GPU needs, and the experiments results
demonstrate that there is a trade-off between performance
gains and the ease of integration. This work focuses mainly
on the experimental exploration of two large code bases: it
pinpoints the most time consuming part in the DFT algo-
rithm and links the GPU based eigensolver for NWChem.
The intention was to integrate the GPU support without
much source code changes. To accomplish this goal, the
standalone units are identified, such as the eigensolver in
the DFT algorithm. However, in order to fully exploit the
available GPU, several software strategies have to be care-
fully designed and implemented. Currently, the performance
bottleneck is in the data transfer between CPU and GPU.
Performance tuning and further investigation of adapting
GPU to more complex algorithms used in computational
chemistry is ongoing.

Acknowledgment

This work was supported in part by Ames Labora-
tory (Iowa State University) under the contract DE-AC02-
07CH11358 with the U.S. Department of Energy, by the
Director, Office of Science, Division of Mathematical, Infor-
mation, and Computational Sciences of the U.S. Department
of Energy under contract number DE-AC02-05CH11231,
and by the National Science Foundation grants NSF/OCI —
0749156, 0941434, 0904782, 1047772. The authors are have
benefited from many helpful discussions with Professors

Theresa L. Windus and Mark S. Gordon and their students
at Jowa State University.

References

[1] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
1. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stan-
ley, D. Walker, and R. C. Whaley. ScaLAPACK Users’ Guide. Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1997.

[2] K. Esler, J. Kim, L. Shulenburger, and D. Ceperley. Fully accelerating
quantum monte carlo simulations of real materials on gpu clusters.
Computing in Science Engineering, PP(99):1, 2010.

[3] Mark S. Gordon and Michael W. Schmidt. Advances in electronic
structure theory: Gamess a decade later. Theory and Applica-
tions of Computational Chemistry:the first forty years, C.E.Dykstra,
G.Frenking, K.S.Kim, G.E.Scuseria (Editors), 2005.

[4] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev.,
136:B864-B871, Nov 1964.

[5] Karl Wilkinson Kevin J. Naidoo and Kyle Fernandes. Accelerating
scientific computing code in fortran: The quantum chemistry project.
PGI Insider, oct 2011.

[6] W. Kohn and L. J. Sham. Self-consistent equations including exchange
and correlation effects. Phys. Rev., 140:A1133-A1138, Nov 1965.

[71 Wen mei W. Hwu. GPU Computing Gems Emerald Edition. Morgan
Kaufmann Elsevier, 2011.

[8] Michael W. Schmidt, Kim K. Baldridge, Jerry A. Boatz, Steven T. El-
bert, Mark S. Gordon, Jan H. Jensen, Shiro Koseki, Nikita Matsunaga,
Kiet A. Nguyen, Shujun Su, Theresa L. Windus, Michel Dupuis, and
John A. Montgomery, Jr. General atomic and molecular electronic
structure system. J. Comput. Chem., 14(11):1347-1363, 1993.

[9] Guochun Shi, V. Kindratenko, I. Ufimtsev, and T. Martinez. Direct
self-consistent field computations on gpu clusters. In Parallel Dis-
tributed Processing (IPDPS), 2010 IEEE International Symposium on,
pages 1 -8, april 2010.

[10] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C.
Klema, and C. B. Moler. Matrix Eigensystem Routines — EISPACK
Guide, volume 6 of Lecture Notes in Computer Science, Editors: G.
Goos and J. Hartmanis. 1976.

[11] LS. Ufimtsev and T.J. Martinez. Graphical processing units for
quantum chemistry. Computing in Science Engineering, 10(6):26 —34,
nov.-dec. 2008.

[12] M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma,
H.J.J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus, and
W.A. de Jong. Nwchem: A comprehensive and scalable open-source
solution for large scale molecular simulations. Computer Physics
Communications, 181(9):1477 — 1489, 2010.

[13] Dong Ye, A. Titov, V. Kindratenko, I. Ufimtsev, and T. Martinez.
Porting optimized gpu kernels to a multi-core cpu: Computational
quantum chemistry application example. In Application Accelerators
in High-Performance Computing (SAAHPC), 2011 Symposium on,
pages 72 —75, july 2011.

